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The flow of a Boussinesq density-stratified fluid of large depth past the algebraic 
mountain (‘Witch of Agnes?) is studied in the hydrostatic limit using the asymptotic 
theory of Kantzios & Akylas (1993). The upstream conditions are those of constant 
velocity and Brunt-Vaisala frequency. On the further assumptions that the flow is 
steady and there is no permanent alteration of the upstream flow conditions (no 
upstream influence), Long’s model (Long 1953) predicts a critical amplitude of the 
mountain (c  = 0.85) above which local density inversions occur, leading to convective 
overturning. Linear stability analysis demonstrates that Long’s steady flow is in fact 
unstable to infinitesimal modulations at topography amplitudes below this critical 
value, 0.65 5 6 < 0.85. This instability grows at the expense of the mean flow 
and may be attributed to a discrete spectrum of modes that become trapped over 
the mountain in the streamwise direction. The transient problem is also solved 
numerically, mimicking impulsive startup conditions. In the absence of instability, 
Long’s steady flow is reached. For topography amplitudes in the unstable range 
0.65 5 F < 0.85, however, the flow fluctuates about Long’s steady state over a long 
timescale; there is no significant upstream influence and no evidence of transient 
wave breaking is found for F < 0.75. 

1. Introduction 
The present investigation is concerned with the flow of density-stratified fluid over 

an obstacle of finite amplitude. This problem was first studied systematically by 
Long (1953), who devised an analytical model that accounts, under specific flow 
conditions, for finite-amplitude effects. Long’s model hinges on the fact that the 
equations governing inviscid, steady, two-dimensional flow reduce to a linear form 
for certain background velocity and density profiles under the hypothesis that the 
topography does not alter these profiles far upstream - the so-called assumption 
of no ‘upstream influence’. In particular, for a weakly stratified (Boussinesq) fluid, 
Long’s model applies when the upstream velocity and Brunt-Vaisala frequency are 
independent of height. According to this model, given the topography shape and for 
fixed values of the other flow parameters, there is a critical amplitude of the obstacle 
above which the predicted steady flow features locally reversed density gradients 
(‘breaking’ streamlines) that would result in static instability (see, for example, Miles 
1969). 

In more recent work, Kantzios & Akylas (1993, hereinafter referred to as KA) 
proposed an asymptotic theory that describes the long-time dynamics of vertically 
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unbounded stratified flow over extended finite-amplitude topography; this flow con- 
figuration is most relevant to atmospheric applications (Baines 1987) and is also 
the subject of the present study. The approach of KA generalizes Long’s model by 
allowing for slightly unsteady disturbances with the proviso that wave breaking is 
not present. Within this framework, it is then possible to examine the realizability 
of Long’s steady states for subcritical topography amplitudes (below that required to 
cause overturning). 

The problem of stratified flow of large depth over topography has also been 
studied extensively through direct numerical simulations. These studies solve the full 
Euler equations of motion in a finite computational domain, imposing the radiation 
condition at the upper boundary via a ‘sponge layer’, and are not limited to flow 
conditions that preclude wave breaking. 

Specifically, Clark & Peltier (1977), Pierrehumbert & Wyman (1985) and Laprise 
& Peltier (198944 among others, concentrate on two-dimensional Boussinesq flow 
with constant velocity and Brunt-Vaisala frequency far upstream past the algebraic 
mountain (‘Witch of Agnes?). They all appear to agree that the steady state furnished 
by Long’s model is reached as long as the amplitude of the topography is subcritical. In 
another numerical study of the same problem, however, Pierrehumbert & Bacmeister 
(1987) find that instability may occur at a slightly subcritical (about 5%) topography 
amplitude owing to convective overturning induced by transient effects. Moreover, 
the simulations of Laprise & Peltier (1989a,b) reveal that the dominant instability 
mechanism even for slightly supercritical topography is of a shear-flow type, owing 
to the steepening of streamlines of the background flow over the topography. 

Pierrehumbert & Bacmeister (1987) also discussed the assumption of no upstream 
influence in the context of related experimental observations by Baines & Hoinka 
(1985). The experiments were conducted in a novel apparatus to simulate an infi- 
nite medium, and revealed upstream motions at significantly subcritical amplitudes, 
suggesting that Long’s model ceases to be valid at relatively low obstacle steepness. 
In their numerical simulations, however, Pierrehumbert & Bacmeister (1987) did not 
observe any permanent alterations in the upstream flow field, and cautioned that 
slowly varying transient disturbances could be mistaken for true upsteam influence. 

In the present paper, we shall discuss the dynamics of nonlinear stratified flow 
over topography on the basis of the asymptotic theory of KA. We concentrate on the 
simplest case of uniformly stratified hydrostatic flow of large depth over the algebraic 
mountain which, as already mentioned, has also been explored in previous numerical 
work. There is, in fact, numerical evidence that this flow quickly evolves into a quasi- 
steady Long state as long as the topography amplitude is not highly supercritical 
(Pierrehumbert & Bacmeister 1987); the flow dynamics is then controlled by slowly 
varying disturbances, making the asymptotic theory most relevant. 

The ensuing analysis centres on two main issues: the stability of Long’s steady 
state for subcritical topography amplitudes and the long-time behaviour of the flow 
when this state is unstable. Based on the evolution equations derived in KA, a 
linear stability analysis of Long’s state to infinitesimal modulations is carried out 
first. Instability sets in at a topography amplitude well below (by about 25%) the 
critical value for overturning, owing to a shear-flow mechanism brought about by 
the steepening of streamlines of the steady flow over the topography. The transient 
flow development in the unstable rigime is then studied by integrating the evolution 
equations numerically, starting from rest. The effect of instability turns out to be 
rather subdued : the flow oscillates slowly about the corresponding Long steady state 
and no transient breaking is found for subcritical topography amplitudes within 10% 
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of the critical value. These findings are discussed in connection with previous related 
work at the end of the paper. 

2. Preliminaries 
Consider the flpw of an inviscid, incompressible, vertically unbounded stratified 

fluid past a two-dimensional obstacle having peak height h and horizontal dimension 
L. Far upstream of the topography, the fluid is assumed to have uniform stratification 
(constant Brunt-Vaisala frequency N O )  and constant velocity Uo. The acceleration 
due to gravity is denoted by g .  These flow quantities may be combined to yield three 
non-dimensional parameters : 

Noh 
UO 

F = -. p = -  UO p=-, No uo 
NoL’ g 

Here p measures dispersive effects, ,L? is the Boussinesq parameter which is a measure 
of stratification, and F controls nonlinear effects. 

Scaling the horizontal (streamwise) coordinate x with L, the vertical coordinate y 
with U 0 / N ,  and time t with L / U o ,  the governing equations of incompressibility, mass 
conservation and momentum balance may be cast in non-dimensional form as 

v - u  = 0, (2.1) 

pr +us V p  = 0, (2.2) 

(2.3) BP(Ut + u - Vu)  = - ( P Y ,  P-?P + Pr)) 3 

where u = ( u , v )  is the velocity field, and p and p are the pressure and density 
respectively. The boundary condition of zero normal velocity on the topography 
y = ~ f ( x , t )  is 

c = E ( U f ,  + f r )  ( y  = C f ) .  (2.4) 
The asymptotic theory of KA describes the dynamics of finite-amplitude, long- 

wave disturbances in a Boussinesq fluid. In terms of the non-dimensional parameters 
introduced above, this regime corresponds to p << 1, p --+ 0, F = U(1) .  Here we shall 
only outline the salient features of the theory; details may be found in the original 
paper. 

The theory is motivated by the observation that, in the hydrostatic limit ( p  + 0), 
Long’s steady state consists of a long-wave mode with vertical wavenumber equal 
to unity. The corresponding group velocity vanishes in the reference frame of the 
obstacle; energy is therefore trapped near the topography and the transient response 
is expected to develop slowly. This resonance suggests that the long-time response 
takes the form of a slowly varying Long state, in line with the results of numerical 
simulations noted earlier (Pierrehumbert & Bacmeister 1987). 

Accordingly. the streamfunction y(x ,  y ,  T )  is posed as 

y’ - I,’“) = y + ( A  el’ + c.c.). (2.5) 
Here A ( x ,  Y ,  T )  = a + ib denotes the complex envelope of the resonant long-wave 
mode; it accounts for the evolution of the disturbance in terms of the ‘slow’ time 
T = p.’t and the ‘stretched‘ vertical coordinate Y = p2y. As explained in KA, one may 
obtain evolution equations for the real amplitudes a and h following a perturbation 
procedure, and thereby describe the long-time dynamics of the flow through (2.5). 

Briefly, deriving these amplitude equations makes use of the fact that, if one neglects 
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transient effects altogether, the density p and the quantity 

s = PWyy + Pu, - + PPY (; 
remain constant along streamlines. This suggests replacing the coordinate y by y : 

on the condition that no flow reversal (wave breaking) is present in the flow field. 
The mass-conservation equation (2.2) then takes the form 

and the momentum equations (2.3) can be manipulated to 

where 
Using the upstream conditions of uniform stratification and constant velocity and 

invoking the Boussinesq approximation /I -+ 0, (2.7) and (2.8) may be integrated to 
yield 

indicates that y is held fixed. 

s = -Po(V)W - ~ 2 P o ( ~ ) w x x  - P 2 / x  Kl dx' (2.10) 
-a YY lp 

with 
po(y) being the (known) density upstream. 

R = PO(W) {WyyT - ( Y W T / Y y ) J  , 

Making use of (2.6) and (2.9), (2.10) may be rearranged as 

w y y  + (w - Y )  = P2(H - wxx), (2.11) 

where 

As expected, if transient effects (the term involving H above) are neglected, (2.11) 
becomes linear and Long's steady-flow model is recovered. 

To describe the flow evolution, we work with (2.11) and follow a multiple-scale 
perturbation procedure : the streamfunction y is expanded as 

where y(O) is the slowly modulated Long's solution (2.5) proposed earlier on physical 
grounds. In terms of the envelope A = a + ib, the boundary condition (2.4) on the 
topography is also cast in the form (to leading order in p) 

acosef - bsinef = -ief ( Y  = 0). (2.12) 

At the next order in p, the following equation is obtained: 

YY w xx YY' 
p + y(') = HCO) - (0) - 2w'o' (2.13) 

where the superscript (O)  indicates that the quantity is to be evaluated using the known 
expression (2.5) for y(O). The desired evolution equations for the amplitudes a(x, Y ,  T )  
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and b(x, Y ,  T) are then obtained by imposing secularity conditions on the right-hand 
side of (2.13) : 

(2.144 

Jd:’ 47c sin y dy + $ b,,y + ay = 0. (2.14b) 

As already indicated, we shall focus on purely hydrostatic flow, in which case the 
dispersive terms involving a,,, b,, in (2.14) are dropped. Furthermore, based on the 
assumption made earlier that precludes wave breaking, the flow field described by 
(2.5) is such that y is defined uniquely as a function of y(O), y = y(y(O); a,b), and one 
may replace the y-integrations with y(O)-integrations in (2.14). After this change of 
integration variable is implemented and one differentiation with respect to x, (2.14) 
reduce to 

(2 .15~)  

(2.15b) 

K;,uT + Kj’bT + h\-y + 
K i l ~ i -  + K&bT - a\-y + 

dx‘ (Kll,a> + KIZrb>) = 0, 

dx’ (Kzr X U ;  + K2zxb;) = 0. 

L 
L 

Here the kernels KI1 , .  . . , K22 are defined by 

(2.16a) 

(2.16b) 

(2.16~) 

K 2 2 ( ~ ,  x’) = - dy(O)yh (y; + ( Y ’ . Y ; ) ~ ~ O I  - Y Y & ~ )  , (2.16d) 

with the notation that primed variables are functions of x’, and K ; ,  G K11 (x, x), . . . , 

Equations (2.15) subject to the boundary condition (2.12) and appropriate initial 
conditions govern the evolution of a and b (and hence the dynamics of the flow 
through (2.5)) as long as no wave breaking is present; this is indeed the case if 

a2 + b’ < (2.17) 

As discussed in KA, Long’s steady flow (in the hydrostatic limit) corresponds to a 

87c ’ r 
K52 K ~ ~ ( x , x ) .  

throughout the flow field. 

particular steady-state solution of (2.15), 2 = a + i6, with no modulation in Y : 

A(x; c )  = a - i ~ { a } ,  (2.18) 

where 

stands for the Hilbert transform of a. Imposing the boundary condition (2.12) then 
determines Z(x; c )  through the integral equation 

(2.19) a cos ef + X ( Z }  sin cf = +f. - 
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As the topography amplitude is increased, there generally is a critical value of 
e above which 2 is such that condition (2.17) is violated, so Long’s steady flow 
features density inversions and flow reversals. In this study, attention is confined to 
the algebraic mountain (also known as the ‘Witch of Agnes?), 

for which this critical overturning amplitude is e = 0.85 (Miles & Huppert 1969). 

3. Stability analysis 

limit on the basis of the asymptotic theory. To this end, we write 
The goal now is to examine the stability of Long’s steady flow in the hydrostatic 

(3.1) @) = - w + W, A = A ( x ; E )  + &x, Y ,  T ) ,  

where ?I corresponds to Long’s hydrostatic steady state v(x, y), as obtained from 
(2.5), (2.18) and (2.19), and 2 = a+ ig to a small perturbation @(x, y, T ) .  Substituting 
(3.1) into (2.15) and linearizing, the perturbation equations are 

(3 .2~)  

where the kernels are evaluated in terms of the known steady state (as indicated by 
the overbar). Moreover, the boundary condition (2.12) yields 

- 
(3.3) 

- acosef - bsinef = 0 ( Y  = 0). 

Some insight into the stability problem is gained by looking at the behaviour of 
perturbations at a long distance from the topography (x t +a). In this limit, 
Long’s steady flow approaches a uniform stream (a, 6 -+ 0), so Kf,, K;2 + 1 
and K;2,  Ki, + 0 while the x-derivatives of the kernels go to zero. Consequently, 
equations (3.2) and the boundary condition (3.3) reduce to 

(3.4a, b )  
- - - 

a T  + b x y  = 0, b T  - a X y  = 0 

and 

This simplified system admits separable solutions, 

- 
a = O  (Y  = O ) .  (3.5) 

- 
(3.6) 

I 

a = sinrnY exp(i5x + oT) ,  b = cosmY exp(i5x + o T ) ,  

where m is real and o = imt. These modes correspond to internal-wave disturbances 
on a uniformly stratified stream over a flat rigid bottom; they are neutral propagating 
waves if ( is real and unstable evanescent waves if 5 is complex. 

Returning now to the full stability problem (3.2), (3.3), note that, even though 
neither T nor Y appears explicitly in equations (3.2) (KI1, ..., K 2 2  depend on x 
alone), only the time dependence can be separated out; this complication arises from 
the boundary condition (3.3) on Y = 0 and is a consequence of the fact that Long’s 
steady flow is not parallel for finite topography amplitude. Accordingly, we consider 
normal-mode disturbances proportional to exp(oT) that are not separable in Y. As 
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x -+ +a, however, each of these modes may be expressed in terms of the (complete) 
set of separable solutions (3.6). Therefore, an unstable mode (Re (T > 0) consists of 
evanescent waves ( 5  = -ia/m is complex) both far upstream and downstream, and 
a necessary condition for instability is the existence of modes that are trapped? over 
the topography (i.e. decay to zero as x -+ +a). 

On physical grounds, it is expected that no trapped modes exist when the topog- 
raphy is mild ( c  << 1) and the background flow deviates only slightly from a uniform 
stream. On the other hand, it would be interesting to know whether such modes 
become possible above a certain finite value of c less than the critical overturning 
amplitude; in such a case, Long’s steady flow would be unstable to modulations 
before static instability sets in. 

This question is addressed by first looking for trapped modes of the stability 
equations (3.2) alone, ignoring the boundary condition (3.3), so the dependence on 
both T and Y can be separated out. It is then demonstrated that the critical value o f f  
for modulational instability obtained from this simplified modal analysis is somewhat 
lower than the critical topography amplitude predicted on the basis of the full stability 
problem (see $4). 

We now seek separable normal-mode solutions of equations (3.2): 

(3.7) 

where m is the (real) vertical wavenumber and (T = Am is the possibly complex growth 
rate. The system (3.2) is then transformed to 

-< 1 
K l 1 d  + Ky2B - iTBx + dx’ (El lxd’  + K12x@) = 0, ( 3 . 8 ~ )  

A s: 
1 K i I d  + Ki2B + i T c d x  + dx’ (EllXd‘ + K22&9‘) = 0. (3.8b) 
A s: 

Furthermore, at a long distance from the topography, it follows from (3.4) that 

We thus have an eigenvalue problem for d ( x )  and B ( x )  with a possibly ‘mixed’ 
spectrum: for purely imaginary values of the eigenvalue parameter 1, equations (3.8) 
have solutions that correspond to neutrally stable radiating waves according to (3.7), 
(3.9) for all e. Apart from this continuous spectrum, however, when .c exceeds a 
certain critical value, there may exist a discrete spectrum comprising a finite number 
of complex eigenvalues (if i is an eigenvalue so is -A*) for which d ( x )  and B(x) decay 
exponentially as 1x1 -+ a and correspond to trapped modes; hence, the existence of 
a discrete spectrum is a necessary condition for instability. 

A search for trapped modes was made by numerically solving equations (3.8), 
subject to the boundary conditions 

d ( x )  -+ 0 (x -+ a), B ( x )  + 0 (x -+ -m). (3.10) 

The numerical procedure uses finite differences on a non-uniform grid, allowing for 

t These modes are distinct from the ones described by Laprise & Peltier (1989a) as trapped: in 
that study, the modes were trapped in the vertical direction between the ground and the steepest 
streamline. 
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finer resolution close to the topography. The derivatives d, and Bx are evaluated 
by first-order forward and backward differences respectively, and the boundary con- 
ditions (3.10) are imposed at the ends of the computational domain. The hydrostatic 
Long's steady state is determined from (2.18), (2.19) using the procedure described 
by Lilly & Klemp (1979), and the kernels are computed as follows. Based on the as- 
sumption that there is no breaking streamline, y = y(y(O); a, b, ) is first determined by 
inverting (2.5) numerically using Newton-Raphson iteration; all the quantities in the 
integrals over y(O) for the kernels (2.16) are then known as functions of (y(') ; a, b )  and 
the integrals are evaluated by the trapezoidal rule. The x-derivatives of the kernels 
are evaluated using centred differences. Finally, the integrals in (3.8) are computed 
using the trapezoidal rule. 

This leads to a standard generalized matrix eigenvalue problem, 

Estimates of the spectrum were first generated for several topography amplitudes 
using a global eigenvalue solver, to obtain a rough approximation to the critical value 
of e and the discrete eigenvalues. More refined approximations to these eigenvalues 
were then found by inverse iteration with shifting. 

The real part of the most unstable (discrete) eigenvalue is plotted as a function 
of E in figure 1. Indeed, there is a critical value of e, less than the overturning 
amplitude e = 0.85, above which trapped modes become possible. The mode shapes 
d ( x )  and a(x) (normalized such that d = 1 where ]dl attains its maximum) for 
the case e = 0.7 are plotted in figure 2. Both the real and imaginary parts are clearly 
trapped close to the topography and they exhibit significant structure, especially on 
the upstream side of the obstacle. The scale over which the trapping occurs decreases 
rapidly with E .  Close to conditions at which instability sets in, the unstable modes are 
barely trapped, and determining the critical value of e accurately is difficult. On the 
basis of figure 1, by extrapolation, we estimate that instability occurs for topography 
amplitudes above E = 0.55. 

In terms of these trapped modes, it is straightforward to construct more general 
solutions to the perturbation equations (3.2) that represent locally confined unstable 
disturbances. For example, choosing a Gaussian distribution of vertical wavenumber 
m, superposition of the modes (3.7) yields 

(3.11) 

It then follows that 

{ 5 } K eaZT2 exp (-(AiT - Y) ' )  Re { :::}, 
where A = A, + iAi and 4 = 2A,T(liT - Y ) .  It may be shown that the kinetic energy 
of this perturbation grows like exp(2$T2) at large T ,  so the flow can be violently 
unstable when e exceeds the critical value above which trapped modes exist. 

Expression (3.11) was also used to check the results of the modal analysis by 
imposing on Long's steady state an initial disturbance that is Gaussian in Y and 
whose variation along x is given by the calculated trapped eigenmode. Using the 
numerical method outlined in the next section, this perturbation was then tracked in 
time and the result was found to agree very well with (3.11), verifying the computed 
modes and eigenvalues. 
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8 
t' 

FIGURE 1. The real part of the most unstable eigenvalue i of the discrete spectrum (corresponding 
to a trapped mode) as a function of E .  

1.0 L 1 1 I 

-10 -5  0 5 10 
X 

FIGURE 2. The dependence of the mode shapes d and on x when 6 = 0.7. The trapping of the 
modes in the streamwise direction is evident. 

The critical topography amplitude for modulational instability ( E  rn 0.55) deduced 
from modal analysis of equations (3.2) is well below the critical overturning amplitude 
E = 0.85. As already noted, however, the separable modes (3.7) are not consistent 
with the boundary condition (3.3) on the topography; moreover, it is not clear that 
they can be combined to satisfy (3.3) by superposition. 

To examine the influence of the wall on the threshold for modulational instability, 
one may compute trapped modes of the full stability problem (3.2), (3.3). The 
associated eigenvalue problem is not separable in Y ,  however, and extensive numerical 
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work is needed. Instead, we shall follow a more direct approach and solve (3.2), (3.3) 
numerically as an initial-value problem for a locally confined initial disturbance. 

4. Evolution of a localized perturbation 
4.1. Energy budget 

In tracking the development of a disturbance numerically, it is useful to monitor 
the energetics of the flow. This is achieved by means of an energy-balance equation 
which also adds to the understanding of the instability mechanism by bringing out 
the energy exchange between the perturbation and the background steady flow. 

To derive the desired equation for the energy of the perturbation, we write the flow 
variables as the sum of a steady mean representing Long’s hydrostatic steady flow 
and a time-dependent small perturbation : 

u = i i + u ,  p = p + 2 ,  p = p + F .  

Upon substitution into the equations of motion (2.1)-(2.3), invoking the Boussinesq 
approximation (P  + 0), and linearizing, the following perturbation equations are 
obtained in the hydrostatic limit ( p  + 0): 

v . u =  0, (4.1) 

( 4 4  
- p t  +ii.vj3+u.vp = 0, 

(4.3a) 

2 = -py, (4.3b) 
where is = (a, V )  and ii = (U, 3. 

Now, multiplying (4.3~)  with U, (4.3b) with U / P  and adding, using (4.1), one has 

1 ,  
P 

i (U2) t  + ;v * (CU2) + U((uEx + U u y )  + -(pv + v (pi)) = 0. 

Intergrating this equation over the entire fluid domain (-00 < x < 00, ef < y < co) 
and using the boundary conditions (the normal velocity must vanish on y = ef and 
the perturbations vanish at infinity) then yields 

d 
dt 
-(KE + PE) = 92, (4.4) 

where 

is the rate of change of the kinetic energy of the perturbation and 

is the rate of change of the potential energy of the perturbation. The term on the 
right-hand side of (4.4), 

92 = - 1: dx ifrn dy U (Ui;ux + U i i y ) ,  
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is the rate of work done by the Reynolds stresses. Depending on the sign of this 
term, power flows either from the mean Aow to the perturbation or in the opposite 
direction. 

Returning now to the asymptotic theory, equation (4.4) translates into an equivalent 
energy-balance equation in terms of the envelope variables. Specifically, with the 
same notation as in (3.1), one has to leading order in ,u (consistent with the evolution 
equations (3.2) and the boundary condition (3.3)) 

(4.5a) 
-KE d = If_ ( i 2 + g 2 ) :  
dt d T  

I 
2n 

-PE d = -- 1 ”  (J’ dx’ J’ d y  (Zxyz + b,y,-> (Zkyk + g T y i ) )  , (4.5b) 
dt 271 --a, 0 

where 
a2 

(.) = d x /  dY(.). 
-m 0 

Similarly, the power-input term on the right-hand side of (4.4) takes the form 

9=-2r [ Idxfx  (Zrsinrf+bcoscf (4.5c) 
Y =o 

where 

and 

Details of deriving expressions (4.5) are given in Appendix A. 

(4.54 b )  that 
In particular, when the topography amplitude is small (e << l), it follows from 

d d -PE- - 
dt dt KE7 

while W is negligible according to ( 4 . 5 ~ ) ~  to leading order. Hence, (4.4) implies that 
d 

d T  
~ (2 + L 2 )  = 0, 

consistent with the simplified problem (3.4), (3.5). 

4.2. Numerical solution 
We next turn our attention to the numerical treatment of the initial-value problem 
for the evolution of a perturbation. Equations (3.2) are discretized by an explicit 
finite-difference method combined with Euler forward time stepping. A grid with 
non-uniform spacing in both x and Y is used to capture the details of the disturbance 
close to the topography. The kernels are evaluated numerically as described in $3, 
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taking great care to ensure that they are well resolved by the grid. All spatial 
derivatives are computed to second-order accuracy and the integrals are evaluated by 
the trapezoidal rule. 

At each time step, the computation is commenced on j = 1, where j denotes the 
grid node number along Y,  j = 0 corresponding to the boundary Y = 0. Using the 
simplified equations (3.4) that are valid far upstream, the values of 2 and at the 
left boundary are determined first, and the entire (x, Y ) plane ( j  2 1) is then covered 
by consecutive x-sweeps. Numerical-stability constraints dictate that the boundary 
condition (3.3) be applied on j = 0 by an implicit method: by evaluating on j = 1 
the terms involving Zxy and &, Zilj=o is eliminated from (3.2b), and the resulting 
tridiagonal system is solved to obtain blj=o; the boundary condition (3.3) is then used 
to calculate Zlj=0. Despite the fact that this procedure was numerically stable for 
moderate values of c, small grid-scale oscillations were observed along Y when c was 
increased beyond 0.6 or so. Since this instability appeared to be very gentle, it was 
eliminated by using the 5-point smoothing stencil described by Shapiro (1975) : 

D. Prasad, J .  Ramirez and T. R. Akylas 

- 

f . - '  - 16C-fj-2 4- 4fj-1 4- lofj 4fj+l -fj+2). 
In a typical run of 2000 time steps, smoothing was applied every 100 steps. Moreover, 
the results were found to be virtually unaffected by cutting by half the number of 
times that smoothing was performed. 

In implementing the above numerical procedure, the grid size used close to the 
topography varied from AX = 0.1, A Y  = 0.1 for c < 0.6 to AX = 0.025, A Y  = 0.1 
for e = 0.75. The time step AT was chosen according to the stability condition 
AT < 0.1 ( A X  AY). Also, the finite computational domain was expanded as time 
increased to accommodate the spreading of the disturbance. This was done by 
monitoring the amplitudes Z and i; a few nodes away from the ends of the grid and 
adding a few points when the amplitudes exceeded a specified tolerance. The values 
of the amplitudes were set to zero at the ends of the grid. As a check of the accuracy 
of the numerical solution, the error in the energy budget (4.4) was typically less than 
2%. Further details of the computational procedure are given in Ramirez (1993). 

4.3. Results 
Computations were carried out for several values of e using the initial conditions 

(4.6) 
- a = a. exp(-(x2 + Y 2 ) > ,  i; = a0 exp(-(x2 + y 2 ) )  tan ef ( T  = 01, 

a0 being a normalization constant such that the kinetic energy of the disturbance 
(2 + g2) = 1 at T = 0. This choice of initial disturbance is consistent with the 
boundary condition (3.3) and has its maximum close to the topography so the 
influence of the boundary on the stability characteristics is fully taken into account. 

At low values of e, the flow is stable, as expected. There is little energy exchange 
between the perturbation and the background flow; the disturbance spreads out 
with time, more or less as predicted by the simplified system (3.4), (3.5) that ignores 
the presence of the topography. Figure 3(a) illustrates the energy budget (4.4) as 
a function of T for the moderately small value of e = 0.5. The rate of change of 

FIGURE 3. The energy budget for a small perturbation to Long's steady state for the cases (a) E = 0.5, 
( b )  E = 0.65 and (c) E = 0.7. The circles and squares represent the rates of change of potential and 
kinetic energy respectively, while the triangles represent the rate of energy transfer from the mean 
flow to the perturbation. 
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FIGURE 4. The perturbation kinetic energy as a function of T at various f. 

energy (potential and kinetic) of the perturbation increases from a positive value at 
T = 0 during the short time that most of the disturbance is still over the topography 
and can extract energy from the mean flow; at later times, when the disturbance has 
spread out, the energy budget exhibits a strongly damped oscillatory behaviour and 
the growth rate of the energy eventually decays to zero. This is also reflected in figure 
4, where the kinetic energy of the disturbance is plotted as a function of T for several 
values of e:  for e = 0.5, the kinetic energy increases for a brief period of time and 
then approaches a constant value as the interaction with the mean flow ceases. 

As the value of e is increased, figure 4 shows that the kinetic energy of the 
perturbation grows for longer time, and there is a critical value of e above which 
the energy appears to be growing indefinitely so the disturbance becomes unstable; 
the critical topography amplitude for instability appears to lie between f = 0.6 and 
E = 0.65. For values of e in this transcritical range, the energy budget, as shown 
in figure 3(b) for e = 0.65, exhibits strong oscillations, the two opposing effects of 
spreading and energy extraction from the mean flow being more or less in balance. 

In the unstable regime, on the other hand, the growth rates of the potential and 
kinetic energies of the perturbation eventually increase monotonically with time, as 
shown in figure 3(c) for e = 0.7. The power extracted from the mean flow by the 
perturbation also grows monotonically; hence, the perturbation grows at the expense 
of the mean flow. This continual energy transfer is facilitated by effectively trapping 
the disturbance over the topography, where the streamlines of the mean flow are most 
steep and the action of the Reynolds stress is most pronounced. 

It was noted earlier (see (4.5~2)) that (IZl2) = (2 + g 2 )  measures the perturbation 
kinetic energy, so [ i 1 2  may be interpreted as (averaged) kinetic energy density. To 
illustrate the significance of trapping in the instability mechanism, /z12 is plotted 
in figure 5 as a function of x and Y at T = 1.0 for e = 0.5 and e = 0.75. At 
T = 0, (lZ12) = 1 for both values of e according to (4.6) and the initial conditions 
are similar. At T = 1.0, however, there are marked differences between the two 
disturbances: when no modulational instability is present ( E  = 0.5), the evolution is 
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FIGURE 5. Perturbation kinetic energy density, I@, as a function of x and Y at T = 1.0 for (a) 
E = 0.5 and ( b )  E = 0.75, illustrating the contrast between the spreading and trapping mechanisms. 

dominated by spreading of the initial disturbance, while in the unstable case E = 0.75 
the rapid growth of the perturbation close to the topography overwhelms spreading 
in the streamwise direction. This is consistent with the conclusion reached in $3 that 
a necessary condition for instability is the existence of trapped modes. 

The critical topography amplitude for modulational instability obtained here, E x 
0.65, is higher than the corresponding value of about 0.55 deduced from the modal 
analysis of equations (3.2) in $3. This difference must be attributed to the effect of 
the boundary condition (3.3) that is ignored in the modal analysis. To verify the 
role of the wall in inhibiting instability, we also tracked the evolution of an initial 
disturbance that was in the form (4.6) but was displaced from the boundary Y = 0 
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by a distance YO = 8 such that the presence of the boundary took some time to be 
felt. For E = 0.5, which is well below critical in the presence of the boundary but 
is close to critical when the boundary is ignored, the energy budget (4.4) revealed a 
mild growth in the rate of change of the energy until the disturbance reached the 
boundary Y = 0 and this trend was reversed. 

5. The transient problem 
Based on the linear stability analysis presented above, Long’s steady flow is unstable 

to infinitesimal modulations when the topography amplitude exceeds E NN 0.65. Here 
we shall examine the transient development of the flow starting from rest, by solving 
the full nonlinear evolution equations (2.15), subject to the boundary condition (2.12), 
assuming that the topography is raised gradually to the specified amplitude. This 
way of establishing the flow mimics experimental conditions and avoids numerical 
difficulties associated with impulsive startup. 

5.1. Energy balance equation 
As in $4, we first derive an energy budget that will aid in verifying the accuracy of the 
computation and will also provide a global description of the flow field. Denoting by 
ii = (2,;;) the deviation of the velocity field from the uniform stream far upstream, and 
by jj and i; the deviations of the density and pressure, respectively, from their values 
far upstream, the governing equations (2.1)-(2.3) (in the hydrostatic limit p --+ 0 and 
in the Boussinesq approximation p --+ 0) take the form 

(5.3b) 
Proceeding as before, combining the momentum equations (5.3) and using (5.1) yields 

h p = -&. 

Upon integrating this equation over the fluid domain using the boundary conditions 
(2, jj and vanish in the far field and the component of velocity normal to the 
topography is zero), the following energy equation, analogous to (4.4), is obtained: 

d 
-(KE + PE) = 8; 
dt 

here, as in (4.4), 
-ICE d = --/ I d  dxlfmdyG2 
dt 2dt  

is the rate of change of kinetic energy and 

(5.4) 
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is the rate of change of potential energy. The term on the right-hand side of (5.4), 

however, has a somewhat different interpretation from the corresponding term in 
(4.4): it is the rate of energy imparted to the flow by the force that is responsible for 
establishing the motion. Alternatively, if the obstacle were being towed in a stratified 
fluid, this term would be the power required to tow the obstacle. 

The energy-balance equation (5.4) may be expressed in terms of the envelope 
variables (see Appendix B); to leading order in p, one has 

d d 
-KE = ~ (a’ + b 2 ) ,  
dt d T  

( 5 . 5 4  

ic 

~ = r S i d x f ~ { 2 ( a s i n € f + b c o s r f . ) l y = O + J d  -32 dYQ(x,Y,T)}, ( 5 . 5 ~ )  

where 

In the small-amplitude limit (e  << l), it follows from (5.5n,b) that 

KE. d 
dt dt 
-PE N - 

Furthermore, ( 5 . 5 ~ )  gives 

Hence, to leading order, (5.4) implies that 
d 

~ (a2 + b 2 )  - e dx fx (b  - b’) I y E 0 ,  
d T  s: 

which may also be derived directly from the linearized versions of the evolution 
equations (2.15) and the boundary condition (2.12). 

5.2. Numerical method 
The overall strategy for solving the evolution equations (2.15) numerically parallels 
that described in $4 for the stability problem. A non-uniform grid with second-order 
approximation of the spatial derivatives by finite differences and forward Euler time 
stepping are used. One essential difference, however, is that the kernels here are no 
longer independent of T (and Y )  but change as the flow evolves, and have to be 
updated at every time step over the entire grid; this makes the computation much 
more expensive. 

In order to reduce the cost, the following procedure was adopted. According to 
(2.16), the kernels are functions of (a ,  b, a’, b’). When a2 + b2 + d2 + b’2 exceeded an 
upper threshold equal to 0.1, the kernels were evaluated numerically as in $4 whereas 
when this amplitude criterion was less than a lower threshold of 0.01, the linear 
limits KI1  = K22 = 1, Kz1 = Kl2 = 0 were used. For intermediate values of the 
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amplitudes, the kernels were evaluated using an analytic approximation : equation 
(2.5) for the streamfunction y(O) was inverted in terms of a power series to determine 
y = y(y(’); a,b) correct to eighth order in a and b. With this approximation of y 
and its derivatives inserted in (2.16), analytic expressions for the kernels, correct to 
sixth order in (a,b,a’,b’), were obtained (Ramirez 1993). In a similar manner, the 
x-derivatives of the kernels were evaluated using 

for m, n = 1,2. 
As in $4, the boundary condition (2.12) was applied implicitly: the values of b on 

the boundary Y = O ( j  = 0) were determined from (2.1%) first (evaluating the kernels 
and the terms involving aT and a X y  on j = 1) and then (2.12) was used to obtain a 
on j = 0; details may be found in Prasad (1996). The grid size used (close to the 
topography) varied from AX = A Y  = 0.1 for E < 0.65 to AX = 0.025, A Y  = 0.1 
for the highest topography amplitude E = 0.75 that we considered; the time step AT 
satisfied the stability condition AT < 0.1 AX AY.  Moreover, it was found necessary to 
apply smoothing in this case as well in order to eliminate a mild numerical instability 
along the vertical direction. Finally, the radiation condition was implemented by 
expanding the computational domain as before. 

5.3. Results 
The transient problem was solved for values of E ranging from 0.5 to 0.75. The forcing 
was turned on according to 

so the topography achieved 99% of its maximum amplitude before T = 0.5. The 
results are presented in terms of the energy budget (5.4) and 

4% T )  = (IA12y=o - la2) /la;ux, 
where A(x) is the envelope corresponding to Long’s steady flow and IAlmUx is the 
maximum value of 1x1. From the above definition, it is clear that d(x, T )  measures the 
local deviation of the transient flow from Long’s steady state on the lower boundary. 

The energy budget for E = 0.5 is shown in figure 6(a); the energy-balance equation 
(40) is satisfied to within 2%f. The rates of change of both the kinetic and potential 
energies as well as the external power input approach constant values shortly after 
the forcing has reached its maximum value, indicating that a steady state has been 
achieved. To check how close this steady state is to Long’s steady flow, the quantity 
d(x, T) is plotted in figure 6(b) as a function of x at three different times. As measured 
by d ,  the deviation from Long’s steady state is quite small (about 3%) and varies little 
with time; moreover, d is more or less symmetric about x = 0 and decays rapidly to 
zero far from the topography at large T .  Hence, it would seem that Long’s steady 
state is achieved for C= = 0.5. We recall that, for this value of E ,  Long’s steady state 
is stable to infinitesimal modulations, and nonlinearity does not turn out to have a 
destabilizing effect on the transient response. 

When the topography amplitude is raised to a value of E = 0.7 for which the 
corresponding Long steady flow is linearly unstable, however, the energy budget is 

7 The error is larger during the time that the topography has not yet reached its maximum 
amplitude. This error can be reduced by turning on the topography more slowly. 
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FIGURE 6. ( a )  The energy budget for the transient response with f = 0.5. The squares represent the 
rate of change of potential energy while the circles represent the rate of change of total energy; the 
triangles denote the power input to the flow. ( b )  The deviation parameter d(x, T )  as a function of 
x at 7' = 1.0,1.4 and 1.8 for 6 = 0.5. 

quite different in character. As shown in figure 7(a) ,  the effect of nonlinearity here 
is to curtail the monotonic growth observed in the linear stability problem (figure 
3c), resulting in what appears to be a sustained oscillation in the energy budget. 
The oscillation occurs on an O(1) timescale in terms of T = p2t,  so the period of 
oscillation ( T  % 1.5) is very long, O(1/p2), in terms of the convective timescale. The 
response, in turn, exhibits a slowly varying transient behaviour rather than reaching 
steady state. The quantity d(x, T )  that measures the deviation from Long's steady 
flow is plotted in figure 7(b) as a function of x at the same three times as in figure 
6(b). While the values of d are still fairly small (on the order of 6-7%), they are 
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upstream side. Whether or not, ultimately, this causes upstream influence is not clear 
and would require carrying the computation to much larger values of T in order to 
give a definitive answer. The amplitude of the upstream disturbance is quite small, 
however; certainly, there is no significant upstream influence comparable to that 
found near resonant flow conditions in the finite-depth problem (Grimshaw & Yi 
1991). 

The energy budget in figure 7(u) for E = 0.7 exhibits an overshoot shortly after 
the forcing achieves its maximum amplitude, followed by a dip. It therefore seemed 
possible that the overshoot might lead to transient breaking at larger subcritical values 
of the mountain amplitude. To check this hypothesis, an abbreviated calculation was 
performed for e = 0.75 up to T = 1.2. While the amplitude of the fluctuation about 
Long’s steady flow increases, no evidence of transient breaking was found. Thus, 
if transient breaking does occur, it will most likely do so very close to the critical 
overturning amplitude of 0.85, consistent with the numerical results of Pierrehumbert 
& Bacmeister (1987). In conclusion, the modulational instability is rather mild in 
nature, causing the flow to go into a slowly varying transient state near Long’s steady 
state without the occurrence of transient breaking. 

6. Discussion 
The present investigation has addressed the stability and realizability of Long’s 

steady flow in the hydrostatic limit using the asymptotic theory of KA. For the 
algebraic mountain, this steady state is unstable to small-amplitude modulations for 
values of the topography steepness E 2 0.65, significantly below the critical overturning 
value of c = 0.85. This is clearly in contrast to the results of earlier investigations 
(Laprise & Peltier 1 9 8 9 ~ ;  Pierrehumbert & Wyman 1985; Clark & Peltier 1977), where 
it was found that the criteria for static and dynamic instabilities are simultaneously 
satisfied. These results are frequently justified by appealing to the Miles-Howard 
theorem, according to which the local Richardson number Ri has to be less than 
somewhere in the flow field for shear-flow instability to occur (Drazin & Reid 1981, 
p. 328), a condition that is first met at the critical amplitude for static instability 
(Lilly & Klemp 1979). However, it must be borne in mind that the above criterion 
applies to parallel flows, whereas the flows considered here ( E  is finite) are strongly 
non-parallel, especially when the steepness approaches the critical value. This caveat 
of the Miles-Howard theorem has also been emphasized by Howard & Maslowe 
(1973) and the fact that Ri < at the critical steepness must therefore be regarded 
as fortuitous. 

We have also demonstrated, using an eigenvalue analysis, that modes trapped 
near the topography in the streamwise direction must exist for instability to occur. 
Physically, this condition ensures that disturbances can lodge in the region where 
the background shear is maximum so they can draw energy from the mean flow 
continually. 

The effects of this instability on the realizability of Long’s steady flow were studied 
by means of a transient calculation starting from rest. The stability boundary was 
found to agree with that of the linear stability problem. In the unstable regime 
6 2 0.65, the effect of nonlinearity causes the transient flow to fluctuate in the 
neighbourhood of Long’s steady state. The transients evolve slowly - on a timescale 
T = O( 1) representing a large number of convective time units - which could explain 
why the modulational instability passed unnoticed in previous work. For example, in 
Laprise & Peltier (1989b), the simulations for p = 0.1 with E = 0.95 (a supercritical 
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amplitude at which the authors found a dominant shear-flow instability) were carried 
out to 36 convective time units, corresponding to T = 0.36. The slow evolution of 
the response that we observe also supports the view that transient upstream motions 
could be mistaken for upstream influence at subcritical topography amplitudes. 

We found no transient wave breaking even when e was within 10% of the critical 
overturning value. We suspect that if subcritical transient breaking occurs, it must 
do so when the topography steepness is very close to the critical value predicted by 
Long’s model. This is in stark contrast to the results found in the corresponding 
finite-depth problem where transient subcritical breaking is quite common (Grimshaw 
& Yi 1991; Lamb 1994). 

Quantitative comparison of the present results with the experiments of Baines & 
Hoinka (1985) is difficult since their obstacles were significantly non-hydrostatic. We 
remark, however, that, according to Baines & Hoinka (1985), there is a range of 
moderately small topography amplitudes for which the flow does not reach steady 
state but develops slowly without breaking; moreover, in this rigime, their data 
indicates the presence of small-amplitude upstream motions that they interpret as 
upstream influence (if viscous effects were neglected). It would seem that this flow 
behaviour resembles, at least qualitatively, the slowly varying transient response 
found here when modulational instability is present. However, in making a detailed 
comparison between theory and experiment, non-hydrostatic and viscous effects (that 
may cause flow separation, among other things) could play an important part. 

Finally, we remark that when the flow is transient, the density perturbation does 
not decay to zero far downstream according to (2.9), but rather gives rise to an O(p2)  
columnar disturbance that persists in the streamwise direction and is modulated in 
the vertical direction. The appearance of a similar ‘shelf‘ owing to transient effects 
was also noted by Warn (1983) in his study of large-amplitude Rossby waves in a 
fluid of finite depth. It then becomes necessary to treat the flow field far downstream 
separately by rescaling the equations to account for the evolution of the shelf in 
the streamwise direction. This problem is discussed in detail by Prasad (1996) in 
the context of three- dimensional stratified flows of finite depth, where the problems 
caused by the shelf are far more severe. It may be noted that a two-dimensional 
stratified flow of finite depth (Grimshaw & Yi 1991) also features a downstream shelf. 
However, the appearance of these shelves does not alter the results of either that 
study or the present one, except for the finer details of the downstream flow field. 

This work was supported by the Air Force Office of Scientific Research Grant 
F49620-92- 5-0086. 

Appendix A. Energetics of small localized disturbance 
Here we demonstrate how the energy-balance equation (4.4) for the evolution of a 

small localized disturbance to Long’s steady state is expressed in terms of the scaled 
variables used in the asymptotic theory of KA. 

We begin with the rate of change of kinetic energy 
I d  a2 - K E = - - 1  d d x l f  dyU2, 

dt 2d t  

Since U = i j y  and - 
i j  = 2(Zcosy-bsiny), 
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one has to leading order in p 

2 "  ifx dy 6; - - dY (ii2 + g2) .  
P2 0 

Hence, 
in agreement with (4 .5~) .  

We next consider the rate of change of potential energy 

d 
-PE = 1 J'" dx ifx dqi 25, 
dt  B --z 

where Ir, = -ij3r and, from (2.9), 

Therefore, 

By integration by parts, invoking the boundary conditions (2.4) and (3.3), the first 
term above can be readily shown to vanish. Using then (Al )  and 

w = y + 2 (acosy - bsiny) , (A 3) 
- 

the integrand of the second term in (A2) gives 

1 - 1 (-I - - 21 J" dY /' dx' dip cos y - b, sin y aT cosy' - bk sin y' 
X P 2  0 -a 

However, from (A3), 

siny = 1 2 ) h  1- wy, cosy = -$ YaW)>? (A 5) 
and combining (A2) with (A4) and (A5) yields (4.5b). 

Finally, using (2.11), (Al)  and (A3), the power-input term takes the form 

where 

Now, using (Al )  and (A3), it follows that 
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(Z6, -aa)  y; 

- _  
- (&a - b,b - Ziix + 

and 

Combining then (A6) with (A7) yields ( 4 . 5 ~ ) .  

Appendix B. Energetics of transient response 
Here we give details of the manipulation involved in expressing the energy-balance 

equation (5.4) for the transient response in terms of the scaled variables used in the 
asymptotic theory of KA. 

The rate of change of kinetic energy is 

-KE d = - - /" dx jfm dyG2, 
dt 2 dt 

where G = QY and 
@ = 2(acosy - bsiny). 

Therefore, 

Lfm dy @; - 2 dY (a2 + b2), 
P2 0 

and 
d d 
dt -KE = -((a2 + b2) 

d T  
as in (5.5a). 

We next consider the rate of change of potential energy 

where 3 = --& and, from (2.9), 
x -  

p = -p@+p2p J f l  dx'. 
--co W Y  &O) 

Therefore, 

d P E =  i / m d x l f - m d y ( @ 2 ) x - p  2 / "dx~f -oody@, /x  dx'. (B2) dt --m --m --m WY 
Upon integration by parts, the first term above becomes 
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and, invoking the boundary condition (2.12), this term vanishes. Furthermore, 

1 - lx dY J" dx' dd0)- (a, cos y - b, sin y) (a; cosy' - b> sin y'). 
71 P2 --a: W Y  W Y  

(B 3) 
Combining then (B2) with (B3), using 

sin y = 1 (0) cosy = -1 (0) 
2YbWy 9 2YaY.v ' 

yields (5.5b). 
Finally, from (5,3b), 

where is given by (Bl), and the rate of energy imparted to the flow takes the form 

In view of (2.11) and (B4), one has 

where 

Also, 

Combining then (B5) with (B6) and (B7), and making further use of (B4), yields 
(5.5c). 
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